

Journal Pre-proof

The carbon cost of inappropriate endoscopy

Luca Elli, MD, PhD, Sergio La Mura, Eng, Alessandro Rimondi, MD, Lucia Scaramella, MD, Gian Eugenio Tontini, MD, PhD, Fabio Monica, MD, Marco Soncini, MD, Matilde Topa, MD, Francesco Bortoluzzi, MD, Andrea Sorge, MD, Flaminia Cavallaro, MD, Nicoletta Nandi, MD, Daniele Noviello, MD, Alessandra Piagnani, MD, Margherita Maregatti, MD, Maja Caldato, MD, Maurizio Vecchi, MD

PII: S0016-5107(23)02865-1

DOI: <https://doi.org/10.1016/j.gie.2023.08.018>

Reference: YMGE 13912

To appear in: *Gastrointestinal Endoscopy*

Received Date: 30 March 2023

Revised Date: 5 August 2023

Accepted Date: 28 August 2023

Please cite this article as: Elli L, La Mura S, Rimondi A, Scaramella L, Tontini GE, Monica F, Soncini M, Topa M, Bortoluzzi F, Sorge A, Cavallaro F, Nandi N, Noviello D, Piagnani A, Maregatti M, Caldato M, Vecchi M, The carbon cost of inappropriate endoscopy, *Gastrointestinal Endoscopy* (2023), doi: <https://doi.org/10.1016/j.gie.2023.08.018>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 by the American Society for Gastrointestinal Endoscopy

The carbon cost of inappropriate endoscopy

Authors:

Luca Elli, MD, PhD,^{1,2} Sergio La Mura, Eng,³ Alessandro Rimondi, MD,^{1,2} Lucia Scaramella, MD,¹ Gian Eugenio Tontini, MD, PhD,^{1,2} Fabio Monica, MD,⁴ Marco Soncini, MD,⁵ Matilde Topa, MD,^{1,2} Francesco Bortoluzzi, MD,⁶ Andrea Sorge, MD,^{1,2} Flaminia Cavallaro, MD,¹ Nicoletta Nandi, MD,^{1,2} Daniele Noviello, MD,^{1,2} Alessandra Piagnani, MD,^{1,2} Margherita Maregatti, MD,^{1,2} Maja Caldato, MD,⁷ Maurizio Vecchi, MD,^{1,2}

Institutions

¹ Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy

² Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy

³ Department of Energy, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

⁴ Gastroenterology and Digestive Endoscopy, Academic Hospital Cattinara, Via Costantino Costantinides 2, 34128 Trieste, Italy

⁵ Department of Internal Medicine, A. Manzoni Hospital, Via dell'Eremo 9, 23100 Lecco, Italy

⁶ Gastrointestinal Unit, Ospedale dell'Angelo, Venice, Italy

⁷ Cascina Brandezzata Hospice, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy

Corresponding author:

Luca Elli MD, PhD

Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

Via Francesco Sforza 35, 20122 Milan, Italy

Phone: 0039 02 55033418

E-mail address: luca.elli@policlinico.mi.it

Journal Pre-proof

The carbon cost of inappropriate endoscopy

Authors:

Luca Elli, MD, PhD,¹ Sergio La Mura, Eng,² Alessandro Rimondi, MD,^{1,3} Lucia Scaramella, MD,¹ Gian Eugenio Tontini, MD, PhD,^{1,3} Fabio Monica, MD,⁴ Marco Soncini, MD,⁵ Matilde Topa, MD,^{1,3} Francesco Bortoluzzi, MD,⁶ Andrea Sorge, MD,^{1,3} Flaminia Cavallaro, MD,¹ Nicoletta Nandi, MD,^{1,3} Daniele Noviello, MD,^{1,3} Alessandra Piagnani, MD,^{1,3} Margherita Maregatti, MD,^{1,3} Maja Caldato, MD,⁷ Maurizio Vecchi, MD,^{1,3}

Institutions

¹ Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

² Department of Energy, Politecnico di Milano, Milan, Italy

³ Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy

⁴ Gastroenterology and Digestive Endoscopy, Academic Hospital Cattinara, Trieste, Italy

⁵ Department of Internal Medicine, A. Manzoni Hospital, Lecco, Italy

⁶ Gastrointestinal Unit, Ospedale dell'Angelo, Venice, Italy

⁷ Cascina Brandezzata Hospice, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy

Corresponding author:

Luca Elli MD, PhD

Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

Via Francesco Sforza 35, 20122 Milan, Italy

Phone: 0039 02 55033418

E-mail address: luca.elli@policlinico.mi.it

ABSTRACT

Background and aims: Digestive endoscopy is a resource-intensive activity with a conspicuous carbon footprint and an estimated rate of inappropriateness. However, the carbon costs of inappropriate endoscopic procedures still remains obscure. The aim of this study is to evaluate the environmental impact of inappropriate endoscopic examinations.

Methods: We calculated the carbon cost of a standard endoscopic procedure (esophagogastroduodenoscopy (EGD) and colonoscopy (CLS)), taking into account the items (e.g. disposable materials, personal protective equipment) and the energy required for the endoscopy procedure itself and the cleaning process. The rates of inappropriateness and the mortality cost of carbon (MCC) of endoscopic examinations in different scenarios were calculated.

Results: EGD and CLS presented a carbon cost of 5.43 kg and 6.71 kg of carbon dioxide (CO₂), respectively. Different scenarios were evaluated, according to the number of endoscopic procedures performed in Italy per 1,000 inhabitants and the reported data on their inappropriateness. The carbon cost of inappropriate EGD and CLS in Italy was 4,133 CO₂ metric tons per year (MCC 0.93), ranging from 3,527 to 4,749, and equivalent to 1,760,446 liters of gasoline consumed. Applying the same data to the European population, the estimated carbon footprint of inappropriate digestive endoscopy in Europe was 30,804 metric tons.

Conclusions. The environmental impact of inappropriate endoscopic procedures in Italy and Europe is remarkable. These results highlight the need to adopt novel strategies aimed at reducing both the carbon footprint of digestive endoscopy and the rate of inappropriate procedures.

INTRODUCTION

Global climate change is by far the hardest challenge of the 21st century. Greenhouse gases (GHG), especially carbon dioxide (CO₂), produced by human activities are the main culprits, due to their impact on thermal energy retention in the atmosphere.^{1,2} Healthcare systems and the industry have a relevant impact on GHG emissions, thereby affecting the health of humans and patients.³ It has been estimated that the combined healthcare sectors of the United States (US), Australia, Canada and the United Kingdom (UK) emit an estimated 748 million metric tons of GHG each year.⁴ Thus, when it comes to cutting CO₂ costs, the aim of building a “greener” healthcare system should be balanced against the intrinsic need to provide patients with safe, hygienic and efficient care. This model should certainly be applied to endoscopy, which is one of the most polluting and waste-generating activities of gastroenterology, especially now that single-use endoscopes can be adopted.⁵⁻⁹ It is believed that a certain amount of waste generated derives from procedures without specific indications. In fact, together with prevention, the single most effective measure to improve the carbon cost of endoscopic care is improving the appropriateness level of procedures.¹⁰ In 2008, the European Panel on the Appropriateness of Gastrointestinal Endoscopy (EPAGE) produced criteria for the appropriateness of colonoscopy in several clinical endoscopic scenarios.¹¹ However, the rate of inappropriate upper gastrointestinal (GI) endoscopy is considerable, estimated to range from 9% to 42%.¹²⁻¹⁴ In a 2021 meta-analysis by Frazzoni et al.¹⁵, the colonoscopy appropriateness indication rate was 71%, far below the 85% threshold proposed by the European Society of Gastrointestinal Endoscopy (ESGE).^{15,16} However, to date, the environmental impact of inappropriate endoscopic procedures still remains poorly assessed.

The aim of the present study is to estimate the carbon footprint of inappropriate endoscopy on a large scale.

MATERIALS AND METHODS

Endoscopic inappropriateness

An extensive Pubmed search was performed to search articles on upper (esophagogastroduodenoscopy, EGD) and lower (colonoscopy, CLS) endoscopy, from 2005 to today: The following MeSH term was used to search for articles relevant to estimating the rate of inappropriate upper endoscopy (esophagogastroduodenoscopy, EGD) and lower endoscopy (colonoscopy, CLS): ("appropriate"[All Fields] OR "appropriated"[All Fields] OR "appropriately"[All Fields] OR "appropriateness"[All Fields] OR "appropriates"[All Fields] OR "appropriating"[All Fields] OR "appropriation"[All Fields] OR "appropriations"[All Fields]) AND ("colonoscopy"[MeSH Terms] OR "colonoscopy"[All Fields] OR "colonoscopies"[All Fields] OR ("gastroscopy"[MeSH Terms] OR "gastroscopy"[All Fields] OR ("upper"[All Fields] AND "endoscopy"[All Fields]) OR "upper endoscopy"[All Fields])). Meta-analyses following the American Society for Gastrointestinal Endoscopy (ASGE)¹⁷ and/or EPAGE^{18,19} indications were considered in evaluating the appropriateness (or not) of endoscopic procedures (a summary of the main EGD and CLS indications is reported in supplementary Table 1). When available, data from national registries²⁰ were used to estimate the number of endoscopic procedures performed per 1,000 inhabitants per year and, consequently, to evaluate the number of inappropriate endoscopies. Based on the rates of inappropriate endoscopies, different scenarios (from the best to the worst) were calculated to define the possible CO₂ emissions. The equivalents of the CO₂ emissions, in terms of consumed gasoline and power plants,

were calculated using the USA environmental protection agency calculator.²¹ The mortality cost of carbon (MCC) was calculated using the Bressler equivalence.²

Carbon footprint evaluation

We estimated the average amount of CO₂ produced during an endoscope reprocessing, the energy (electricity) required to operate endoscopes, the use of personal protective equipment (PPE), the adoption of single-use endoscope accessories, the need for vascular access, as well as the cleanliness, climate and lighting of the endoscopic room, the use of computers and the paper to print the report and pictures. Histology carbon footprint was evaluated according to a study by Gordon et al.²². For each disposable item, when CO₂ equivalents were not specified by the manufacturer, we recorded the weight of constituent materials and estimated the carbon footprint, taking into account the energy (kWh/kg) used to produce the product and its final destination in the end-of-life cycle. To evaluate this in detail, we considered the materials which the components mainly contain and drew the carbon footprint values from the best scientific documentation; subsequently, we estimated the global carbon footprint per endoscopic procedure^{23–27}. The standard procedure and the values were initially calculated for EGD, and then for CLS. Regarding the latter, we doubled the energy requirements, taking in consideration the longer procedural time (currently considered twice as long when compared to an EGD).

To calculate electricity consumption into the carbon footprint, the Italian values were derived from the indices of the latest 2022 report of the Higher Institute for Environmental Protection and Research²⁸ and from the 2021 emission factors report of the International Energy Agency (IEA), which contains the same indices for many countries around the world.²⁹ It should be noted that in a highly variable and turbulent

energy context, these values may undergo significant variations in the coming years.³⁰

Based on the energy source mix of each country, we estimated the estimated carbon costs to other countries, both European (e.g. France, Poland and Great Britain) and non-European (e.g. USA and China) such as the subdivision in direct and indirect emissions (scope 1, 2 and 3)³¹.

It is worth noting that the carbon footprint considered all of the component materials and should also include energy consumption during the manufacture and transportation of these (scope 3). However, in our analysis this has been kept constant given the usual practice of an almost uniform and standard use of such products. The CO₂ footprint has been expressed in metric tons.

RESULTS

According to data from the Italian Association of Hospital Gastroenterologists (AIGO), 45 endoscopic investigations are performed per 1,000 patients in Italy each year: 54% EGD and 46% CLS.^{20,32} The rate of inappropriate endoscopic examinations can be inferred from two previous studies on this topic: a systematic review with meta-analysis conducted on 53,392 patients by Zullo et al.³³ for EGD, and a second systematic review with meta-analysis investigating 19,822 patients by Frazzoni et al.¹⁵ for CLS. A confidence interval (CI) for inappropriate endoscopy was available in both studies; thus, the lowest value of the confidence interval and the highest value of the CI were considered, respectively, to evaluate the best-case scenario and the worst-case scenario for endoscopy inappropriateness (Table 1).

The carbon footprint of each evaluated endoscopy item and energy consumption is shown in supplementary Table 2. The conversion from material and energy to CO₂ is reported in supplementary Table 3. Analysing all the items and the energy required, we estimated a total of 5.43 kg of CO₂ emitted for EGD and 6.71 kg of CO₂ for CLS in the Italian scenario (Figure 1). Plastic alone is responsible for the 35% of the CO₂ emissions from endoscopic procedures. Direct emissions (scope 1) represent the 71% and 58% in case of EGD and CLS, respectively; indirect emissions (power supply, scope 2) are responsible for the remaining part (see supplementary Table 2). On 1 January 2022, Italy had a population of 59,983,122 inhabitants;³⁴ thus, about 2,699,239 endoscopies are performed per year, corresponding to 1,457,589 EGD and 1,241,650 CLS. In the case of EGD, when considering the rate of inappropriateness reported in Table 1, the metric tons of CO₂ emitted from the lowest, average and highest values of the 95% CI were 1,694, 1,717 and 1,750, respectively. In the case of CLS, when considering the rate of inappropriateness reported in Table 1, the tons

of CO₂ emitted from the lowest, average and highest limit of the 95% CI were 1,833, 2,416 and 2,999, respectively. The total carbon footprint of inappropriate endoscopies (Italian energy parameters) is 4,133 tons, ranging from 3,527 to 4,759 (see Table 2 for equivalents). The MCC, due to CO₂ emissions caused by inappropriate endoscopies, was 0.93, ranging from 0.79 to 1.07, when considering the best-case and worst-case scenarios, respectively.

If we apply these findings to the European Union and its population of 447,000,000³⁵, some 20,115,000 endoscopies are performed each year (10,862,100 EGD vs 9,252,900 CLS). Among these, 2,357,075 EGD and 2,683,341 CLS could be considered inappropriate, with an estimated carbon footprint of 30,804 tons (MCC 6.96). The EGD and CLS carbon footprints of some different European and non-European countries is reported in Fig. 2.

Discussion

CO₂ emissions from inappropriate endoscopic procedures are remarkable when evaluated on a national (Italy) scale, ranging from 3,500 to 4,700 metric tons per year. These carbon footprint values are strongly influenced by the energy mix of each nation, resulting in much higher rates in those nations exploiting more carbon fossils in their energy plans (Fig. 2).

Inappropriateness is a significant issue for endoscopy because it increases costs, overloads waiting lists and reduces the diagnostic yield of procedures.³⁶ From the other hand a forced and strict endoscopic triage, as during the COVID-19 pandemic, could lead to delays in diagnosing ulcers, tumors, inflammatory bowel disease, celiac disease and other diseases.^{13,37-40} Far from this scenario, a balance reducing the number of inappropriate endoscopies, nowadays attested around 30%, is auspicable. In the present study, we evaluated for the first time the environmental impact of EGD and CLS with inappropriate indications, showing a dramatic carbon cost and ensuing increase of mortality (MCC). Carbon cost also appeared relevant when European data were evaluated. This negative environmental impact induced by inappropriate endoscopies would induce to adopt strategies aimed at limiting the rate of endoscopies performed without a clear indication. A solution to reduce this phenomenon could be provided by a pre-endoscopy triage. Preliminary assessments were already adopted during the COVID-19 pandemic, when the need to limit access to endoscopy and hospitals forced endoscopic units to temporarily suspend open access.⁴¹ Although the pandemic scenario remains exceptional, a specialist (tele)consultation before prescribing invasive procedures (as EGD and CLS) without a widely accepted indication could support an appropriateness increase.

Despite the scarcity of data on the rate of inappropriate endoscopy, our calculated carbon cost of endoscopic procedures is in line with the previous findings.⁷ While 6.4 kg of CO₂ per endoscopy might, at first, appear acceptable, when calculated against the backdrop of the total number of endoscopic procedures performed in a modern developed economy like Italy, the amount of CO₂ emitted should be considered as environmental impacting. Furthermore, the present finding is corroborated by previous studies evaluating the amount of waste generated every day in the endoscopic room; in fact, each endoscopic procedure produces 2.1 kg of waste and leads to 38,000 metric tons of waste produced annually by the endoscopy units in the USA.⁴² It is estimated that this figure could quadruple if single-use endoscopes are adopted on a larger scale.⁴² The use of disposable endoscopes has raised doubts about the sustainability of these accessories. Although single-use duodenoscopes have been introduced to reduce the rate of infections after endoscopic retrograde colangiopancreatography, the wide adoption of single-use gastroscopes and colonoscopes could appear less reasonable.^{5,6,43} Questions, such as “What level of infection risk can be acceptable?”, and “What are the environmental implications and sustainability if the single-use model will be extended to include gastroscopes and colonoscopes?”⁴⁴, still remain open. Strategies for reducing endoscopic costs without increasing infection risks are needed. To mitigate the environmental impact of disposable accessories, appropriate pre-procedure planning is recommended to prevent excess and the inadvertent use of accessories.⁴⁵ Moreover, the digitalization of GI endoscopy, such as related health-care data, patient’s reports and instructions for bowel preparation, could help to reduce paper waste. All medical reports should be accessible to all healthcare staff on a single digital platform, so that they can be easily consulted by general doctors or by other specialists to reduce time and costs.^{46,47}

Histological analysis has emerged as a crucial issue, with a relevant carbon footprint.²² In the near future, optical diagnostics and the use of artificial intelligence (AI) could reduce the use of histology⁴⁸; a careful evaluation is, therefore, required to assess the balance between GHG emissions and the potential savings of AI usage in clinical practice.⁴⁹

Another strategy to reduce the carbon footprint may involve improvements to logistics in waste recycling. However, most manufacturers of endoscopic equipment and disposable devices still do not disclose their specific carbon footprint, thereby hampering the adoption of “green” policies in the choice of endoscopic facilities. Additionally, the primary barrier to recycling in many endoscopy units is the lack of awareness by most endoscopy staff members on the expenses and correct categorization of endoscopic waste.⁵⁰ A 2022 study demonstrated how educational programs on waste handling can considerably reduce medical waste and, consequently, the carbon footprint in the endoscopy field.⁵¹ These simple precautions could reduce regulated medical waste production by employing the correct recycling process in an easy and sustainable way over time, without compromising endoscopy performance.⁵¹

Furthermore, it must be noted that sustainability and carbon costs are not static factors. In our study, we investigated the CO₂ emissions per endoscopy, taking into account the Italian energy mix (and others). In this context, it must be emphasized that sustainability is a fluid concept influenced by numerous factors. For example, the availability and price of resources can influence CO₂ emissions. This factor was particularly evident in 2022 due to the war in Ukraine, which triggered and worsened a global supply chain crisis, limiting access to materials that are vital to the health care industry.³⁰ As a consequence, the financial, social and environmental sustainability of

human activities may change over time and the sustainable practices of today could become the unsustainable practices of tomorrow.⁵²

Our study presents some limitations; in the absence of manufacturers to declare the carbon footprint of their products, the strategy we used to calculate the carbon footprint of a “standard” EGD or CLS could be both underestimated or overestimated. Despite our low rate of inappropriate endoscopy, we did not investigate more specialist endoscopic procedures, such as ultrasound endoscopy, enteroscopy and ERCP. The difficulty in obtaining information about the composition, place of origin, and transportation of the materials used in the endoscopic unit is another aspect that was not considered in our analysis. As a consequence, despite evaluating the place of origin of the materials, it is difficult to completely evaluate the CO₂ emissions derived from scopes 3, leading to an underestimation of carbon footprint.⁵³

Notably, the annual estimated carbon footprint in Italy amounts to approximately 355,000,000 tons, whereas inappropriate endoscopy contributes just 4,133 tons.⁵⁴ It is essential to note that despite the relatively small percentage (less than 0.001%) of the total carbon footprint attributed to inappropriate endoscopy, fostering sustainability should be regarded as a personal responsibility. Every segment of society must adopt a sustainable mindset to work towards the goal of achieving a net-zero health system for the future.

In conclusion, it is possible to partially reduce the inappropriate rate of endoscopy if everyone strives for small changes in their daily routines. Reducing the rate of inappropriate endoscopic examinations could be a first step (reduce) to mitigate the environmental impact of GI endoscopy and increasing sustainability, although a multifactors approach is pivotal (Fig. 3). While awaiting greater advances in the industry that will guarantee more sustainable and safer devices, a clinical decision

process favoring the transition to environmental sustainability should be adopted also during hour daily clinical practice.

Guarantor of the article:

Luca Elli

Author contributions:

Conceptualization, analysis of the data, writing and drafting the manuscript: LE, MV, GET; Data analysis, software, results analysis, writing the manuscript: SLM, LS, AR; Conceptualization, data research, drafting and critical revision of the manuscript: FM, MS, FB, FC, AS, NN, DN, MT, AP, MC, MM.

Financial support:

This study was partially funded by the Italian Ministry of Health - Current research IRCCS.

Competing interests:

None.

Acknowledgements:

The study was promoted by the ESGE green working group.

FIGURE LEGENDS

Figure 1. Carbon footprint of esophagogastroduodenoscopy (EGD), colonoscopy (CLS) and its composition.

Figure 2. CO₂ footprint of esophagogastroduodenoscopy (EGD) and colonoscopy (CLS) in different countries.

Figure 3. Flowchart to increase sustainability.

References

1. Kuthu L. Greenhouse Gas Emission Efficiencies of World Countries. International Journal of Environmental Research and Public Health 2020, Vol 17, Page 8771. 2020 Nov 25;17(23):8771.
2. Bressler RD. The mortality cost of carbon. Nature Communications 2021 12:1 [Internet]. 2021 Jul 29 [cited 2022 Nov 28];12(1):1–12. Available from: <https://www.nature.com/articles/s41467-021-24487-w>
3. Eckelman MJ, Huang K, Lagasse R, Senay E, Dubrow R, Sherman JD. Health care pollution and public health damage in the united states: An update. Health Aff. 2020 Dec 1;39(12):2071–9.
4. Sherman JD, MacNeill A, Thiel C. Reducing Pollution From the Health Care Industry. JAMA. 2019 Sep 17;322(11):1043–4.
5. Siau K, Hayee BH, Gayam S. Endoscopy's Current Carbon Footprint. Tech Innov Gastrointest Endosc. 2021 Jan 1;23(4):344–52.
6. Baddeley R, Aabakken L, Veitch A, Hayee B. Green Endoscopy: Counting the Carbon Cost of Our Practice. Gastroenterology. 2022 Feb;
7. Gayam S. Environmental Impact of Endoscopy: “scope” of the Problem. American Journal of Gastroenterology. 2020 Dec 1;115(12):1931–2.
8. Rodríguez de Santiago E, Dinis-Ribeiro M, Pohl H, Agrawal D, Arvanitakis M, Baddeley R, et al. Reducing the environmental footprint of gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) Position Statement. Endoscopy [Internet]. 2022 Jul 8 [cited 2022 Jul 14]; Available from: <http://www.ncbi.nlm.nih.gov/pubmed/35803275>
9. Bortoluzzi F, Sorge A, Vassallo R, Montalbano LM, Monica F, la Mura S, et al. Sustainability in gastroenterology and digestive endoscopy: Position Paper from the Italian Association of Hospital Gastroenterologists and Digestive Endoscopists (AIGO). Dig Liver Dis [Internet]. 2022 Dec 1 [cited 2022 Nov 29];54(12):1623–9. Available from: <https://pubmed.ncbi.nlm.nih.gov/36100516/>
10. Chandrasekhara V, Eloubeidi MA, Bruining DH, Chathadi K, Faulx AL, Fonkalsrud L, et al. Open-access endoscopy. Gastrointest Endosc. 2015 Jun 1;81(6):1326–9.
11. Ardit C, Peytremann-Bridevaux I, Burnand B, Eckardt VF, Bytzer P, Agréus L, et al. Appropriateness of colonoscopy in Europe (EPAGE II). Screening for colorectal cancer. Endoscopy. 2009;41(3):200–8.
12. Froehlich F, Burnand B, Pache I, Vader JP, Fried M, Schneider C, et al. Overuse of upper gastrointestinal endoscopy in a country with open-access endoscopy: a prospective study in primary care. Gastrointest Endosc. 1997 Jan 1;45(1):13–9.
13. Hassan C, Bersani G, Buri L, Zullo A, Anti M, Bianco MA, et al. Appropriateness of upper-GI endoscopy: an Italian survey on behalf of the Italian Society of Digestive Endoscopy. Gastrointest Endosc. 2007 May 1;65(6):767–74.
14. Rossi A, Bersani G, Ricci G, DeFabritiis G, Pollino V, Suzzi A, et al. ASGE guidelines for the appropriate use of upper endoscopy: Association with endoscopic findings. Gastrointest Endosc. 2002 Nov;56(5):714–9.
15. Frazzoni L, la Marca M, Radaelli F, Spada C, Laterza L, Zagari RM, et al. Systematic review with meta-analysis: the appropriateness of colonoscopy increases the probability of relevant findings and cancer while reducing unnecessary exams.

Aliment Pharmacol Ther [Internet]. 2021 Jan 1 [cited 2022 Nov 25];53(1):22–32. Available from: <https://onlinelibrary.wiley.com/doi/full/10.1111/apt.16144>

16. Kaminski MF, Thomas-Gibson S, Bugajski M, Bretthauer M, Rees CJ, Dekker E, et al. Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative. United European Gastroenterol J [Internet]. 2017 Apr 1 [cited 2022 Jun 27];5(3):309. Available from: [/pmc/articles/PMC5415221/](https://pmc/articles/PMC5415221/)

17. Appropriate use of gastrointestinal endoscopy. Gastrointest Endosc. 2000 Dec;52(6):831–7.

18. Juillerat P, Peytremann-Bridevaux I, Vader JP, Ardit C, Schusselé Filliettaz S, Dubois RW, et al. Appropriateness of colonoscopy in Europe (EPAGE II) Presentation of methodology, general results, and analysis of complications. [cited 2022 Dec 8]; Available from: www.epage.ch

19. Vader, Burnand, Froehlich, Dubois, Bochud, Gonvers. The European Panel on Appropriateness of Gastrointestinal Endoscopy (EPAGE): Project and Methods. Endoscopy. 1999 Oct;31(8):572–8.

20. Buscarini E, Conte D, Cannizzaro R, Bazzoli F, de Boni M, Delle Fave G, et al. White Paper of Italian Gastroenterology: Delivery of services for digestive diseases in Italy: Weaknesses and strengths. Digestive and Liver Disease. 2014;46(7).

21. Greenhouse Gas Equivalencies Calculator | US EPA [Internet]. [cited 2022 Nov 29]. Available from: <https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator>

22. Gordon IO, Sherman JD, Leapman M, Overcash M, Thiel CL. Life Cycle Greenhouse Gas Emissions of Gastrointestinal Biopsies in a Surgical Pathology Laboratory. Am J Clin Pathol [Internet]. 2021 Oct 1 [cited 2022 Nov 22];156(4):540–9. Available from: <https://pubmed.ncbi.nlm.nih.gov/33822876/>

23. Pang MM, Pun MY, Chow WS, Ishak ZAM. Carbon footprint calculation for thermoformed starch-filled polypropylene biobased materials. J Clean Prod. 2014 Feb 1;64:602–8.

24. Dormer A, Finn DP, Ward P, Cullen J. Carbon footprint analysis in plastics manufacturing. J Clean Prod. 2013 Jul 15;51:133–41.

25. Dias AC, Arroja L. Comparison of methodologies for estimating the carbon footprint – case study of office paper. J Clean Prod. 2012 Mar 1;24:30–5.

26. Rizan C, Reed M, Bhutta MF. Environmental impact of personal protective equipment distributed for use by health and social care services in England in the first six months of the COVID-19 pandemic. J R Soc Med. 2021 May 16;114(5):250–63.

27. IEA Iron and Steele [Internet]. [cited 2023 Jun 8]. Available from: <https://www.iea.org/reports/iron-and-steel>

28. Presentazione del Rapporto Rifiuti Speciali - Edizione 2022 — Italiano [Internet]. [cited 2022 Nov 25]. Available from: <https://www.isprambiente.gov.it/it/events/presentazione-del-rapporto-rifiuti-speciali-edizione-2022>

29. Emissions Factors 2021 - Data product - IEA [Internet]. [cited 2022 Nov 25]. Available from: <https://www.iea.org/data-and-statistics/data-product/emissions-factors-2021>

30. Sorge A, Tontini GE, Scaramella L, Nandi N, Cavallaro F, Vecchi M, et al. Could war and the supply chain crisis affect the sustainability of gastrointestinal endoscopy and single-use endoscopes? Gut [Internet]. 2022 Apr 20 [cited 2022 Jul 11]; Available from: <https://gut.bmj.com/content/early/2022/04/19/gutjnl-2022-327568>

31. Scope 1 and Scope 2 Inventory Guidance | US EPA [Internet]. [cited 2023 Jun 9]. Available from: <https://www.epa.gov/climateleadership/scope-1-and-scope-2-inventory-guidance>
32. Ho KMA, Banerjee A, Lawler M, Rutter MD, Lovat LB. Predicting endoscopic activity recovery in England after COVID-19: a national analysis. *Lancet Gastroenterol Hepatol* [Internet]. 2021 May 1 [cited 2022 Nov 25];6(5):381. Available from: [/pmc/articles/PMC7946568/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946568/)
33. Zullo A, Manta R, de Francesco V, Fiorini G, Hassan C, Vaira D. Diagnostic yield of upper endoscopy according to appropriateness: A systematic review. *Digestive and Liver Disease* [Internet]. 2019 Mar 1 [cited 2022 Nov 25];51(3):335–9. Available from: <http://www.dldjournalonline.com/article/S1590865818312684/fulltext>
34. Popolazione residente al 1° gennaio [Internet]. [cited 2022 Dec 8]. Available from: <http://dati.istat.it/Index.aspx?QueryId=18460>
35. Life in the EU [Internet]. [cited 2022 Nov 27]. Available from: https://european-union.europa.eu/principles-countries-history/key-facts-and-figures/life-eu_en
36. di Giulio E, Hassan C, Marmo R, Zullo A, Annibale B. Appropriateness of the indication for upper endoscopy: a meta-analysis. *Dig Liver Dis* [Internet]. 2010 Feb [cited 2022 Dec 27];42(2):122–6. Available from: <https://pubmed.ncbi.nlm.nih.gov/19497799/>
37. Elli L, Tontini GE, Filippi E, Scaramella L, Cantù P, Vecchi M, et al. Efficacy of endoscopic triage during the Covid-19 outbreak and infective risk. *Eur J Gastroenterol Hepatol* [Internet]. 2020 Aug 7 [cited 2020 Aug 17]; Available from: <http://www.ncbi.nlm.nih.gov/pubmed/32773511>
38. Elli L, Rimondi A, Scaramella L. Endoscopy during the Covid-19 outbreak: experience and recommendations from a single center in a high-incidence scenario. *Digestive and Liver Disease*. 2020;52:606–12.
39. Elli L, Scaramella L, Lombardo V, Scricciolo A, Doneda L, Roncoroni L, et al. Refractory celiac disease and COVID-19 outbreak: findings from a high incidence scenario in Northern Italy. *Clin Res Hepatol Gastroenterol* [Internet]. 2020 Aug [cited 2020 Sep 19]; Available from: <https://pubmed.ncbi.nlm.nih.gov/32893177/>
40. Gimeno-García AZ, Hernández A, Hernández-Bustabad A, Amaral C, Reygosa C, Morales-Arraez D, et al. Usefulness of prioritization systems during the resumption of gastrointestinal endoscopy activity during the COVID-19 pandemic. *Endoscopy* [Internet]. 2021 Jun 1 [cited 2022 Dec 27];53(6):662–3. Available from: <https://pubmed.ncbi.nlm.nih.gov/33902113/>
41. Elli L, Tontini GE, Scaramella L, Cantù P, Topa M, Dell’osso B, et al. Reopening endoscopy after the COVID-19 outbreak: Indications from a high incidence scenario. Vol. 29, *Journal of Gastrointestinal and Liver Diseases*. Romanian Society of Gastroenterology; 2020. p. 295–9.
42. Namburair S, von Renteln D, Damianos J, Bradish L, Barrett J, Aguilera-Fish A, et al. Estimating the environmental impact of disposable endoscopic equipment and endoscopes. *Gut*. 2021 Dec 1;gutjnl-2021-324729.
43. Le NNT, Hernandez L v., Vakil N, Guda N, Patnode C, Jolliet O. Environmental and health outcomes of single-use versus reusable duodenoscopes. *Gastrointest Endosc* [Internet]. 2022 Dec [cited 2022 Nov 29];96(6). Available from: <https://pubmed.ncbi.nlm.nih.gov/35718068/>
44. Agrawal D, Tang Z. Sustainability of Single-Use Endoscopes. *Tech Innov Gastrointest Endosc*. 2021 Jan 1;23(4):353–62.
45. Matharoo M, Haycock A, Sevdalis N, Thomas-Gibson S. Endoscopic non-technical skills team training: the next step in quality assurance of endoscopy training. *World J*

Gastroenterol [Internet]. 2014 Dec 14 [cited 2022 Nov 29];20(46):17507–15. Available from: <https://pubmed.ncbi.nlm.nih.gov/25516665/>

46. Turley M, Porter C, Garrido T, Gerwig K, Young S, Radler L, et al. Use of electronic health records can improve the health care industry's environmental footprint. *Health Aff (Millwood)* [Internet]. 2011 May [cited 2022 Nov 29];30(5):938–46. Available from: <https://pubmed.ncbi.nlm.nih.gov/21555478/>

47. Costantino A, Bortoluzzi F, Giuffrè M, Vassallo R, Montalbano LM, Monica F, et al. Correct use of telemedicine in gastroenterology, hepatology, and endoscopy during and after the COVID-19 pandemic: Recommendations from the Italian association of hospital gastroenterologists and endoscopists (AIGO). *Dig Liver Dis* [Internet]. 2021 Oct 1 [cited 2022 Dec 27];53(10):1221–7. Available from: <https://pubmed.ncbi.nlm.nih.gov/34312103/>

48. Okagawa Y, Abe S, Yamada M, Oda I, Saito Y. Artificial Intelligence in Endoscopy. *Dig Dis Sci* [Internet]. 2022 May 1 [cited 2022 Nov 29];67(5):1553–72. Available from: <https://pubmed.ncbi.nlm.nih.gov/34155567/>

49. Cowls J, Tsamados A, Taddeo M, Floridi L. The AI Gambit — Leveraging Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and Recommendations. *SSRN Electronic Journal* [Internet]. 2021 Mar 15 [cited 2022 Nov 29]; Available from: <https://papers.ssrn.com/abstract=3804983>

50. Agrawal D, Shoup V, Montgomery A, Wosik J, Rockey DC. Disposal of Endoscopic Accessories After Use: Do We Know and Do We Care? *Gastroenterol Nurs* [Internet]. 2017 [cited 2022 Nov 29];40(1):13–8. Available from: <https://pubmed.ncbi.nlm.nih.gov/28134715/>

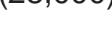
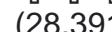
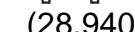
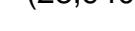
51. Cunha Neves JA, Roseira J, Queirós P, Sousa HT, Pellino G, Cunha MF. Targeted intervention to achieve waste reduction in gastrointestinal endoscopy. *Gut* [Internet]. 2022 [cited 2022 Nov 29]; Available from: <https://pubmed.ncbi.nlm.nih.gov/35985798/>

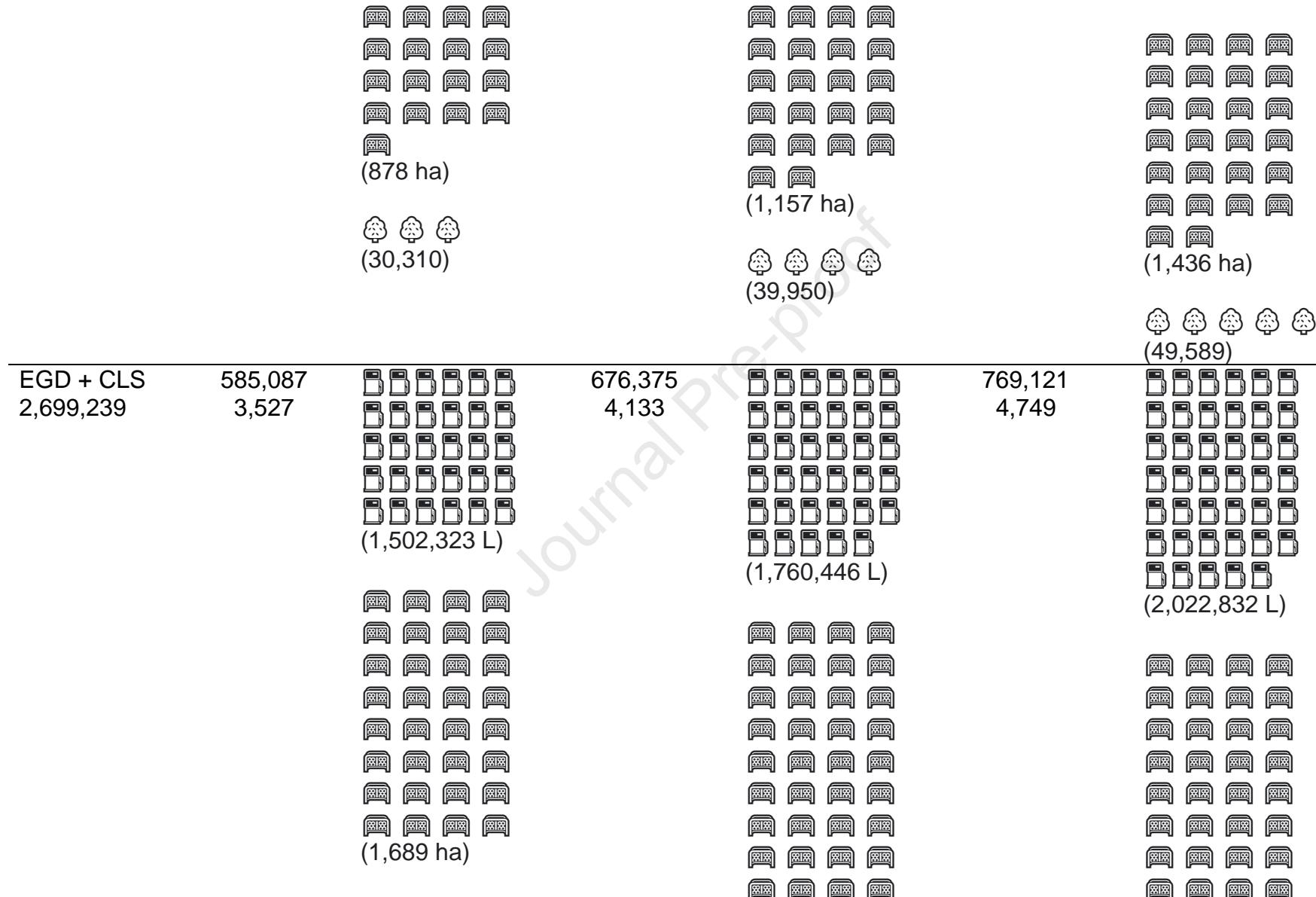
52. Sorge A, Tontini GE, Scaramella L, Nandi N, Cavallaro F, Vecchi M, et al. Could war and the supply chain crisis affect the sustainability of gastrointestinal endoscopy and single-use endoscopes? *Gut* [Internet]. 2022 Apr 20 [cited 2022 Jun 27];gutjnl-2022-327568. Available from: <https://pubmed.ncbi.nlm.nih.gov/35444015/>

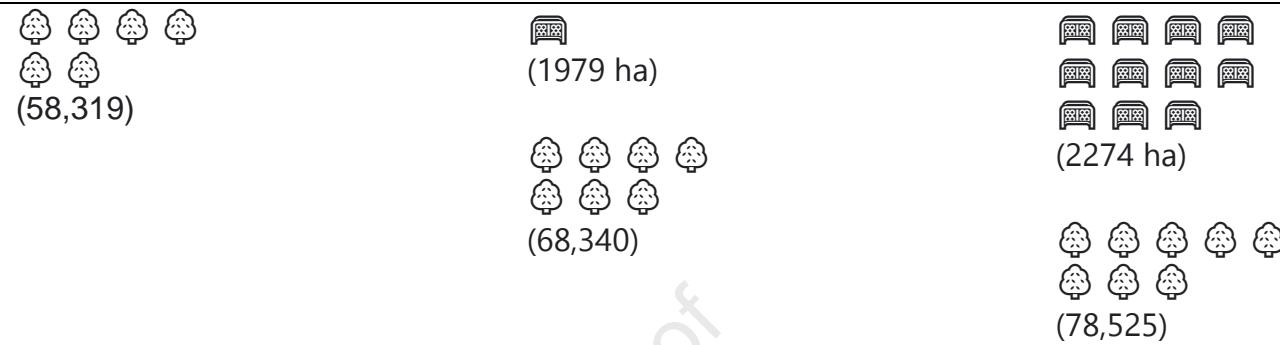
53. What are scope 1, 2 and 3 carbon emissions? | National Grid Group [Internet]. [cited 2022 Dec 8]. Available from: <https://www.nationalgrid.com/stories/energy-explained/what-are-scope-1-2-3-carbon-emissions>

54. Italy CO2 Emissions - Worldometer [Internet]. [cited 2023 Aug 5]. Available from: <https://www.worldometers.info/co2-emissions/italy-co2-emissions/>

Figure 1. Carbon footprint of esophagogastroduodenoscopy (EGD), colonoscopy (CLS) and its composition in Italy.






Figure 2. CO₂ footprint of esophagogastroduodenoscopy (EGD) and colonoscopy (CLS) in different countries.

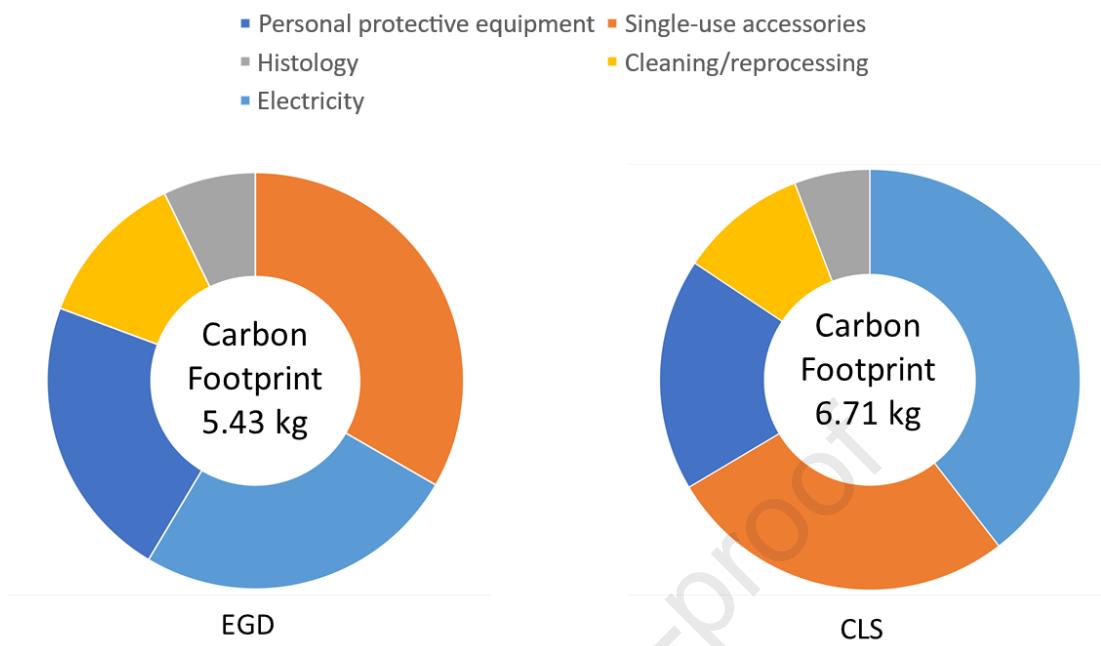

Figure 3. Flowchart to increase sustainability.

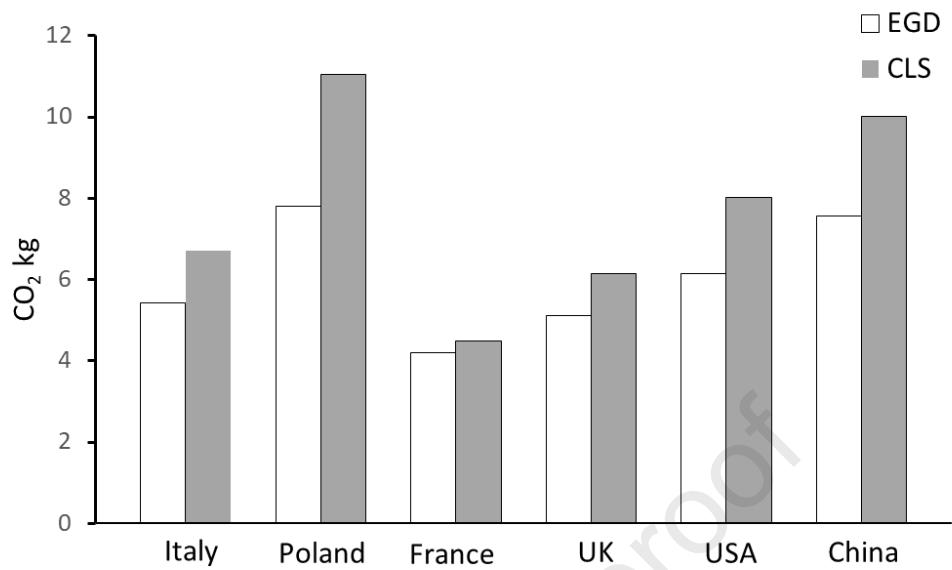

Table 1. Evidence on the rate of inappropriateness for esophagogastroduodenoscopy (EGD) and colonoscopy (CLS).

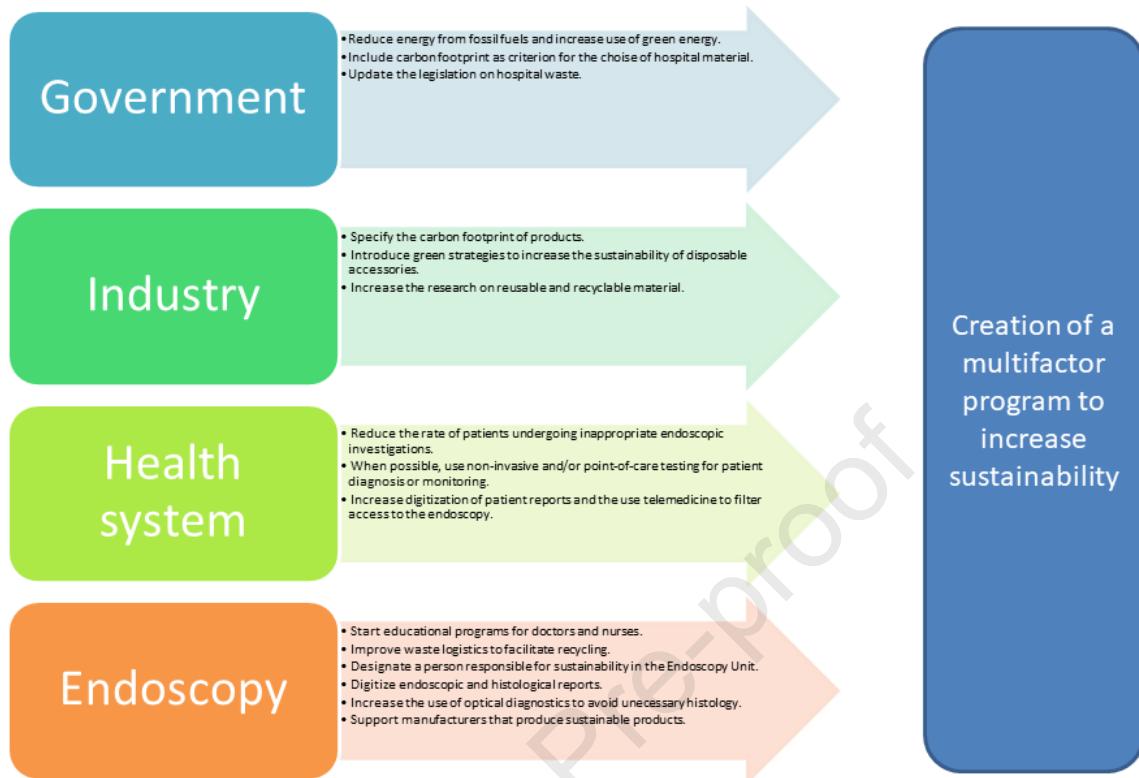
Study	Study Type	Endoscopy type	No. patients	Average value of inappropriateness	Lower CI 95%	Upper CI 95%
Zullo et al. 2019 ³³	Meta Analysis	EGD	53,392	21.7 %	21.4 %	22.1 %
Frazzoni et al. 2021 ¹⁵	Meta Analysis	CLS	19,822	29 %	22 %	36 %

Table 2. Estimated CO₂ production and equivalents in different scenarios of inappropriate esophagogastroduodenoscopies (EGD) and colonoscopies (CLS).

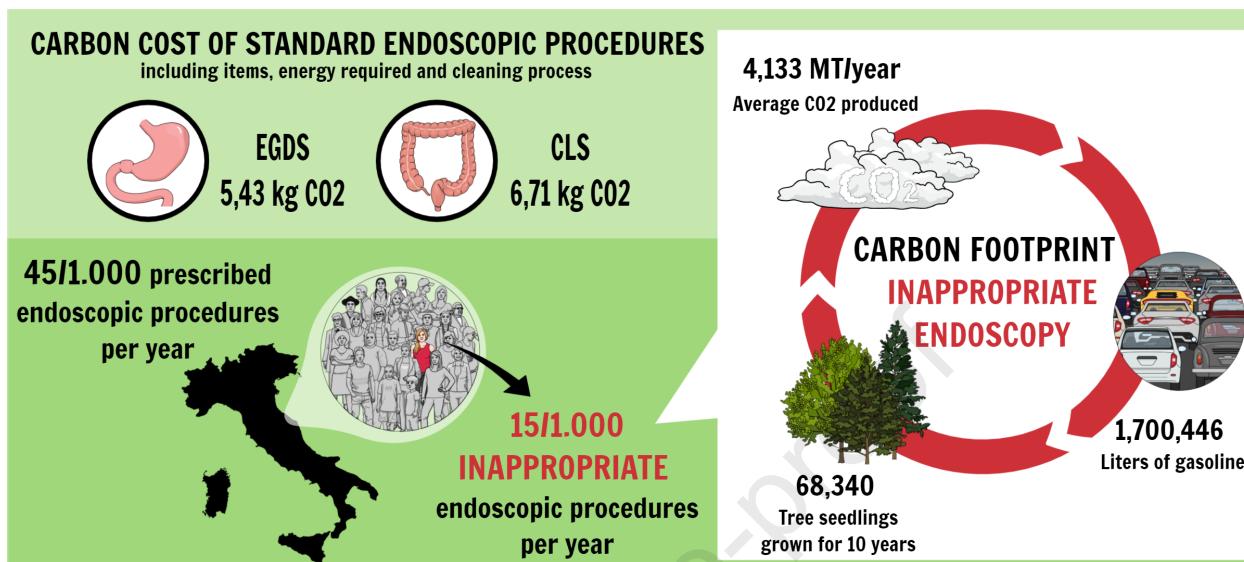
Procedure	Lowest inappropriate rate	Equivalents	Average inappropriate rate	Equivalents	Highest inappropriate rate	Equivalents
Type number	Number		Number		Number	
	CO ₂ tons		CO ₂ tons		CO ₂ tons	
EGD	311,924		316,297		322,127	
1,457,589	1,694	 	1,717	 	1,750	
		(721,560 L)		(731,356 L)		(745,725 L)
		(811 ha)		(822 ha)		(838 ha)
		(28,000)		(28,391)		(28,940)
CLS	273,163	 	360,078	 	446,994	
1,241,650	1,833	 	2,416	 	2,999	
		(780,763 L)		(1,029,093 L)		
						(1,277,420 L)




Equivalent Legend (from <https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator>)


 = 50,000 liters of gasoline consumed

 = 100 soccer fields of forest needed to sequester the emitted CO₂


 = 10,000 tree seedlings, grown for 10 years, needed to sequester the emitted CO₂

THE CARBON COST OF INAPPROPRIATE ENDOSCOPY

Abbreviation list

AI artificial intelligence

CLS colonoscopy

EGD esophagogastroduodenoscopy

MCC mortality cost of carbon

PPE personal protective equipment